
Translation Ranger: Operating System Support for
Contiguity-Aware TLBs

Zi Yan
Rutgers University & NVIDIA

ziy@nvidia.com

Daniel Lustig
NVIDIA

dlustig@nvidia.com

David Nellans
NVIDIA

dnellans@nvidia.com

Abhishek Bhattacharjee
Yale University

abhishek@cs.yale.edu

ABSTRACT
Virtual memory (VM) eases programming effort but can suffer from
high address translation overheads. Architects have traditionally
coped by increasing Translation Lookaside Buffer (TLB) capacity;
this approach, however, requires considerable hardware resources.
One promising alternative is to rely on software-generated trans-
lation contiguity to compress page translation encodings within
the TLB. To enable this, operating systems (OSes) have to assign
spatially-adjacent groups of physical frames to contiguous groups
of virtual pages, as doing so allows compression or coalescing of
these contiguous translations in hardware. Unfortunately, modern
OSes do not currently guarantee translation contiguity in many
real-world scenarios; as systems remain online for long periods of
time, their memory can and does become fragmented.

We propose Translation Ranger, an OS service that recov-
ers lost translation contiguity even where previous contiguity-
generation proposals struggle with memory fragmentation. Trans-
lation Ranger increases contiguity by actively coalescing scat-
tered physical frames into contiguous regions and can be leveraged
by any contiguity-aware TLB without requiring changes to applica-
tions. We implement and evaluate Translation Ranger in Linux
on real hardware and find that it generates contiguous memory
regions 40× larger than the Linux default configuration, permit-
ting TLB coverage of 120GB memory with typically no more than
128 contiguous translation regions. This is achieved with less than
2% run time overhead, a number that is outweighed by the TLB
coverage improvements that Translation Ranger provides.

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems; • Software and its engineering→ Virtual memory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322223

KEYWORDS
Translation Lookaside Buffers; Memory defragmentation; Operat-
ing system; Heterogeneous memory management
ACM Reference Format:
Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019.
Translation Ranger: Operating System Support for Contiguity-Aware TLBs.
In The 46th Annual International Symposium on Computer Architecture (ISCA
’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3307650.3322223

1 INTRODUCTION
Virtual memory (VM) eases programming inmanyways. It abstracts
the complexity of physical memory, provides memory protection
and process isolation, and facilitates communication between cores
and/or compute units through a shared virtual address space. Vir-
tual memory is used today not just for CPUs but also increasingly
for GPUs and other accelerators [3, 19, 47]. Figure 1 shows an ex-
ample system with a group of CPUs, GPUs, and other accelerators,
where each type of device can directly access both its own memory
as well the memory of other devices via the virtual memory system.

High performance virtual memory can be achieved by embed-
ding a Translation Lookaside Buffer (TLB) in each computation
unit to cover all physical memory. However, since covering all of
physical memory would require considerable translation storage
overheads [18, 45], vendors today choose to implement TLBs that
cover only a portion of the total memory space. For example, Intel
has been (approximately) doubling its CPU TLB resources every
generation from Sandybridge through Skylake [20], resulting in
TLBs with thousands of entries today. Vendors like AMD imple-
ment even larger TLBs for their GPUs [28, 49], but these large
TLBs consume non-trivial area and power [5, 12, 24, 36] and are
ill-suited for other types of accelerators with limited hardware
resources [18, 41, 45].

Recent studies focusing on the address translation wall [7] pro-
pose using translation contiguity to mitigate VM overheads [4, 9, 23,
37, 39]. A contiguous region maps a set of contiguous virtual pages
to a corresponding group of spatially-adjacent physical frames.
Contiguous regions are desirable for emerging TLB designs that
can compress these translations into a single TLB entry. Ideally, a
contiguous region of N pages can be stored with just a single TLB
entry rather than N entries. Figure 2 shows the general concept
of contiguity [9, 39], and is representative of several aggressive
proposals to exploit contiguity with range TLBs [23], devirtualizing
memory [18], and direct segments [4]. These approaches, combined

https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3307650.3322223

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee

 Memory addressable to
all CPUs, GPUs, and accelerators

CPUsCPUsCPUs

CPU Memory
(e.g., 1TB)

GPU Memory
(e.g., 32GB)

GPU
TLB TLB

Accelerators

GPU Memory
(e.g., 32GB)

GPU
TLB

TLBTLB TLBTLB

Cache-
coherent

Link

Non
Cache-

coherent
Link

TLBTLB TLBTLB

Figure 1: Hypothetical system comprised of CPUs, GPUs,
and other accelerators utilizing a single shared virtual and
physical address space.

with traditional huge page techniques [32, 40, 46], may be able to
drive address translation overheads to near zero in future systems.

Although influential, existing translation contiguity proposals
typically require either specific amounts of contiguity (e.g., discrete
page-sized contiguity for huge pages [12, 35, 44]), restricted types
of contiguity (e.g. where virtual and physical pages must be identity
mapped [18]), or serendipitously-generated contiguity (e.g., TLB
coalescing [39]). Others still require large swaths of contiguity that
can be created only at memory (pre)allocation time (e.g., direct
segments and ranges [4, 23]). The question of how OSes can ac-
tively generate unrestricted and general-purpose contiguity from any
arbitrary starting condition (e.g., after active use) remains open.

Our goal is to develop OS support for creating general-purpose
translation contiguity in a robust manner across all execution en-
vironments. This means that unlike prior work [4, 18], we cannot
generate contiguity only during initial memory allocations; we
must also generate it throughout the workload’s lifetime. It means
that we must be able to generate contiguity on real-world systems
with long uptimes, where memory may be (heavily) fragmented
by diverse workloads that are spawned and terminated over time.
Further, we cannot not rely on OS/application customization via
mechanisms like identity mappings [18] or programmer-specified
segments [4] which can preclude important OS features like copy-
on-write or paging to disk, and may affect security features like
address space layout randomization (ASLR) [18].

To achieve this, we propose Translation Ranger, a new OS
service that actively coalesces fragmented pages from the same virtu-
ally contiguous range to generate unrestricted amounts of physical
memory contiguity in realistic execution scenarios. This enables any
previously proposed TLB optimization—e.g., from COLT [9, 12, 39],
to direct segments [4], to Range TLB [23], to hybrid coalescing
TLBs [37] to devirtualizing memory [18]—to compress information
about address translations into fewer hardware TLB entries. The
contributions of this work are:

(1) We propose active OS page coalescing to generate unbounded
amounts of translation contiguity in all execution environ-
ments regardless of the amount of memory fragmentation
in the system. Because it does not depend on custom hard-
ware support, Translation Ranger is widely applicable in
any system with TLB support for contiguity, whether that
system is already commercially available [9, 39] or relies on
emerging research proposals such as range TLBs [18, 23].

V0 → P4

Traditional TLB

Contiguity-aware TLB

V3 → P7

V12 → P8

 V15 → P11

[V0-V3] → [P4-P7]

[V12-V15] → [P8-P11]

[V0-V3] → [P4-P7]

[V12-V15] → [P8-P11]

…
…

Page Table

V0 P4
V1 P5
V2 P6
V3 P7

V12 P8
V13 P9
V14 P10
V15 P11

V0 P4
V1 P5
V2 P6
V3 P7

V12 P8
V13 P9
V14 P10
V15 P11

…

V0 P4
V1 P5
V2 P6
V3 P7

V12 P8
V13 P9
V14 P10
V15 P11

…

…
…

Figure 2: A contiguity-aware TLB (left) uses two entries to
cache four translations each, while a traditional TLB (right)
requires eight entries.

(2) We implement Translation Ranger in the Linux v4.16
kernel to assess the feasibility of our approach. Our real-
system implementation sheds light on the subtle challenges
of building Translation Ranger within real OSes. Chief
among them are the challenges of reducing page migration
overheads, dealing with the presence of pages deemed non-
movable by the kernel, and understanding the impact of page
coalescing on user application performance. We demonstrate
that it is useful to coalesce pages not only at allocation time,
but also post-allocation in highly-fragmented systems. This
observation goes beyond prior work which generally avoids
post-allocation defragmentation because of its presumed
overheads [4, 12, 18, 23, 39]. To encourage further research
on translation contiguity and coalescing TLBs, we have open-
sourced our kernel implementation. 1

(3) We show that Translation Ranger generates significant
contiguity (> 90% of 120GB application footprints are cov-
ered using only 128 contiguous regions, compared to < 1%
without coalescing). It does so with low overhead (< 2% of
overall application run time while coalescing 120GB mem-
ory), thereby ensuring that the performance gain delivered
via coalescing is a net win for applications.

2 BACKGROUND
The increasing overheads of address translation and virtual memory
have prompted research on techniques to mitigate their cost [4, 9,
12, 18, 23, 37–39, 49]. We summarize these efforts in Table 1 and
discuss them before describing Translation Ranger in detail.

2.1 Using Translation Contiguity
The earliest approaches to exploiting translation contiguity focused
on huge pages [32, 40, 46]. OSes form huge pages by allocating
groups of spatially-adjacent physical frames to a spatially-adjacent
group of virtual pages in discrete-sized chunks at aligned memory
boundaries. For example, the x86-64 architecture supports 2MB and
1GB huge pages if the OS can allocate 512 or 262,144 contiguous 4KB
virtual pages and physical frames aligned to 2MB or 1GB address
boundaries, respectively. This permits x86-64 compliant TLBs to use

1https://github.com/ysarch-lab/translation_ranger_isca_2019

https://github.com/ysarch-lab/translation_ranger_isca_2019

Translation Ranger: Operating System Support for Contiguity-Aware TLBs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Techniques Software Requirements Hardware Requirements Coverage Limits

Buddy Allocator Reservation Page Table
hugetlbfs Separate pools Required No change 2MB & 1GB page size TLB 2MB and 1GB
THP&khugepaged 2MB pages None No change 2MB page size TLB 2MB
COLT [39] Contiguous pages None No change Coalesced TLB Up to 8× 4KB
Dir Segments [4] Not related Required Segment table Direct Segment registers Any size
Redundant Memory
Mappings [23]

Increase max order,
eager paging None Range table Range TLB Any size in HW, but limited by SW

Hybrid TLB [37] Contiguous pages None Anchor page table Hybrid TLB N× 4KB or 2MB
Devirtualizing
Memory [18]

Increase max order,
eager paging None A new page table

entry Access validation cache 4KB, 2MB, or 1GB in HW, but limited by
SW

Table 1: Techniques used or proposed by industrial or academic research groups for high performance address translation.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Rounds of benchmark execution

N
u

m
 o

f
1

G
B

 c
o

n
tig

u
o

u
s
 r

e
g

io
n

s

503.postencil 553.pclvrleaf 563.pswim graph500-omp gups

Figure 3: There is plenty of contiguity available at boot time,
but memory becomes fragmented soon thereafter.

a single entry to cache what would otherwise take 512 or 262,144
entries..

Although huge pages can be effective, they only offer discrete
chunks of contiguity. As memory capacities continue to grow, trans-
lation contiguity amounts in excess of 1GB or sizes between the
discrete page sizes of 2MB and 1GB will be useful. For this rea-
son, recent work has considered translation contiguity approaches
complementary to traditional huge pages. All of these techniques
require hardware support from the TLB, as outlined in Table 1. For
example, direct segments [4], uses programmer-OS coordination
to mark gigabyte- to terabyte-sized primary segments of memory
that are guaranteed to be mapped using contiguous translations.
While this approach can substantially reduce TLB misses, direct
segments can be challenging to use for real-world workloads which
need more than one primary direct segment (to allocate contiguous
segments in different parts of their address space) and because of
the need for explicit programmer intervention. Redundant memory
mappings [23] support arbitrary translation ranges in TLBs, but re-
quire invasive OS changes to produce these contiguous translation
ranges. Devirtualizing memory [18] extends the concepts of direct
segments for area-constrained accelerators, but works under the
optimistic assumption that OSes can always offer large contiguous
memory regions for devirtualization.

2.2 Allocation-Time Contiguity
One way to create allocation-time contiguity is to reserve the mem-
ory in advance of application run. Libhugetlbfs achieves this by

reserving memory at boot time [27]. Allocations for 2MB or 1GB
pages are satisfied from these reserved memory pools. Similarly, de-
vice drivers often use customized memory allocators that perform
similar reservation in advance [11].

Other approaches in Table 1 target contiguous allocations at run
time. Prior work achieves this by making changes to the widely-
used buddy memory allocator [25]. The buddy allocator can be a
source of translation contiguity because it groups contiguous free
memory into free page pools of different sizes, from 1 to 2N pages,
where N is called the max order of the buddy allocator. Standard
allocations will thus contain a maximum of 2N contiguous pages.
For example, Linux’s buddy allocator supports maximum contigu-
ous allocations of 4MB. However, because the buddy allocator must
support fast insertions and deletions, free pages are stored in un-
ordered lists. This means that one or more memory allocations
cannot guarantee contiguity greater than 2N pages even if two or
more contiguous 2N pages are available in the same free list.

Prior work creates allocation-time contiguity by increasing the
max order of the buddy allocator [18, 23]. However, this creates
multiple problems. First, Linux’s sparsemem (used to support dis-
contiguous physical address spaces, which is common in modern
systems) requires each contiguous physical address range to be
aligned to 2N [50]. This means that if the max order is increased to
support contiguous free ranges of 1GB, many gigabytes of memory
may be wasted. Second, increasing the max order does not solve
the problem of fragmentation; it only allows programs to obtain
large allocations in low fragmentation scenarios. Fragmentation
does not directly affect the contiguity of in-use memory ranges, but
it does affect the amount of contiguity available at allocation time.

2.3 Memory Fragmentation
To quantify the problem of fragmentation, we ran a set of bench-
marks multiple times starting with a fresh-booted system with
128GB of memory (see Table 2) and we increased the max order of
the buddy allocator to allocate large contiguous regions [18, 23].
Figure 3 shows that all benchmarks have >80% of their footprint
covered by 1GB contiguous regions (not to be confused with 1GB
pages, which must also be aligned) on their first execution imme-
diately after boot. However, as the benchmarks keep running, the
number of 1GB contiguous regions drops to only 20%. With Trans-
lation Ranger, we enable better contiguity in both fresh-booted
systems and heavily-fragmented systems.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee

P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14 P15 P16P1P0 P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14 P15 P16P1P0

(a) In-use page fragmentation prevents 8-page contiguity even though there are
10 free pages available. Filled blocks are in-use pages.

P0-P511
Non-moveable
Free Page Pool

P512-P1023
Moveable

Free Page Pool

P1024-P1535
Non-moveable
Free Page Pool

P1536-P2047
Moveable

Free Page Pool

(b) Moveable/non-moveable free page pool fragmentation prevents user space
getting contiguity beyond 512 pages.

Figure 4: Some possible types of fragmentation.

Large contiguous regions are often fragmented in long-running
systems for several reasons. For example, in-use pages can prevent
otherwise-free buddy pages from being promoted to a larger free
page pool for allocation.We show an example of this in Figure 4a. In-
use pages allocated are non-movable (also called wired in FreeBSD
or non-paged in Windows [30, 42]), which means that they cannot
be defragmented [34]. The use of non-moveable free page pools,
which are dedicated for kernel page allocations, can minimize the
interleaving of kernel pages with user pages, as shown in Figure 4b;
this avoids non-movable page fragmentation, but prevents large
contiguous regions beyond each pool size from being formed [34].
This also explains why benchmarks in Figure 3 lose 1GB contiguous
regions over multiple rounds of executions.

Surprisingly, existing OS memory compaction techniques can
sometimes harm contiguity. As shown in Figure 5, Linux uses mem-
ory compaction to move in-use pages to one end of physical address
space, leaving the other end with contiguous free frames. However
compaction moves only base pages and not transparent huge pages
(THP) because existing TLBs, which cannot coalesce contiguous
THPs into a single hardware entry, are unable to benefit from higher
contiguity. Compaction is also unaware of the contiguity of in-use
pages, so if a set of contiguous in-use pages are moved to a set of
scattered free pages, the original contiguity may be destroyed.

3 TRANSLATION RANGER
We design Translation Rangerwith several goals in mind. Trans-
lation Ranger should go beyond the restricted amount of conti-
guity offered by techniques like huge pages; it should support arbi-
trarily sized contiguity whenever possible. This contiguity should
be generated even on systems with high load and memory fragmen-
tation after page allocation. Finally, contiguity generation should
be robust to system behavior no matter how many workloads have
spawned, have died, or are executing on that system.

3.1 Design Overview
Translation Ranger creates contiguity from both virtual pages
and physical frames. Contiguity in virtual pages depends upon the
layout of a process’s virtual address space. Most OSes organize each
process’s virtual address space as multiple non-overlapping virtual
address ranges. In Linux, each virtual address range is described
by a struct vm_area_struct, or virtual memory area (VMA).
Applications obtain virtually-contiguous address ranges via mmap

(Begin) Physical Frames (End)

VMA1
V1 V2 V3V0

P93 P94 P95 P96 P97 P98 P99P93 P94 P95 P96 P97 P98 P99…

(Begin) Physical Frames (End)

VMA1
V1 V2 V3V0

P93 P94 P95 P96 P97 P98 P99P93 P94 P95 P96 P97 P98 P99…

Memory compaction

P3 P4 P5 P6P2 P7P1P0 P3 P4 P5 P6P2 P7P1P0

P3 P4 P5 P6P2 P7P1P0 P3 P4 P5 P6P2 P7P1P0

Figure 5: Defragmentation via memory compaction (e.g., in
Linux) might destroy in-use contiguity as an unintended
side effect of creating more free memory contiguity.

or malloc. Physical frames are allocated and assigned to virtual
pages lazily when the virtual page is accessed for the first time. This
means that contiguous regions are created when contiguous virtual
pages in a VMA are assigned contiguous physical frames. However,
since the OS may assign any physical frame to a faulting virtual
page, contiguous virtual pages in a VMA are typically mapped to
non-contiguous physical frames as shown in Figure 6.

Translation Ranger’s approach to generating translation con-
tiguity is to rearrange the system’s physical memory mappings
such that each VMA can be covered by as few contiguous regions
as possible, with regions that are as large as possible. Ideally, a
single VMA would constitute one contiguous region, and could be
tracked using just one TLB entry. To minimize region counts and
maximize region sizes, Translation Ranger does the following:

(1) It assigns an anchor point to each VMA. An anchor point is a
virtual page (VPN) and physical frame (PFN) pair, (Vanchor ,
Panchor), that acts as a reference around which Transla-
tion Ranger builds contiguity using all pages in this VMA.

(2) It actively coalesces memory within each VMA based on the
assigned anchor point. Figure 6 shows an example of active
coalescing for the casewhere (V0, P4) is the anchor point. The
VMA is coalesced by 1 migrating P2 to P4, 2 exchanging
P5 with P9, 3 exchanging P7 with P6, 4 exchanging P7
with P3, ultimately leading to V0-V3 mapping to P4-P7.

(3) As a background daemon, it periodically iterates over all
active VMAs in the system to maintain contiguity during
the course of VMA allocations, expansions, and contractions,
which occur naturally through the lifetime of an application.

We detail each of these steps in the next three subsections.

3.2 Per-VMA Anchor Point Assignment
To achieve large regions of contiguity, Translation Ranger has
to select anchor points carefully. It is natural to consider using the
translation corresponding to the first in-use virtual page of a VMA
as a good candidate for the anchor point when no anchor point has
been selected for this VMA. However, to make this anchor point
useful, the OS has to allocate the physical frames for these virtual
pages to satisfy several requirements. The question of how multiple
VMAs interact is central to this issue. Consider, for example, Figure

Translation Ranger: Operating System Support for Contiguity-Aware TLBs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Physical Frames

VMA
[V0, V3]

V1 V2 V3V0

Physical Frames

VMA
[V0, V3]

V1 V2 V3V0

…… …… P3 P4 P5 P6P2 P8 P9P7P3 P4 P5 P6P2 P8 P9P7P3 P4 P5 P6P2 P8 P9P7P3 P4 P5 P6P2 P8 P9P7

Page frame
coalescing

Figure 6: Coalescing the pages in a Virtual Memory Area
(VMA): after coalescing page frames, virtual pages V0–V3
map to contiguous physical frames P4–P7. Filled page frame
boxes denotes those mapped by V0–V3, marked boxes de-
notes the frames mapped by other VMAs, and blank boxes
denotes free frames. The VMA’s Anchor Point is (V0, P4).

7a, where VMA1 contains V0-V3, while VMA2 contains V12-V15.
If VMA1 and VMA2 use (V0, P4) and (V12, P8) as their respective
anchor points, each VMAs can maximize the contiguity it achieves.

On the other hand, Figure 7b shows that a less fortunate an-
chor point selection of (V12, P6) for VMA2 damages contiguity
formation because this anchor point selections causes inter-VMA
overlap of physical frames. In this situation, coalescing VMA2 will
wipe out (some of) VMA1’s contiguity and vice-versa. Even worse,
when these VMA sizes change, we have to revisit these mappings,
which can dramatically increase the number of page migrations
needed to compensate for the inter-VMA interference and increase
Translation Ranger’s overheads.

To avoid interference between regions during coalescing, Trans-
lation Ranger tracks the physical address space as coalesced and
uncoalesced regions. Translation Ranger assigns newly allo-
cated VMAs to the uncoalesced physical region whenever possible.
When the translations within a VMA are coalesced, this region is
marked as coalesced. To find uncoalesced regions for new alloca-
tions, Translation Ranger simply uses an algorithm similar to
first-fit [53], i.e., scan linearly through all coalesced regions and
stop at the first sufficiently large hole between any two such regions.
When no such hole is found, Translation Ranger tries to accom-
modate it by removing the smallest VMA’s anchor point; otherwise,
it skips this VMA. This approach avoids inter-VMA interference,
and thus substantially mitigates Translation Ranger overheads
by minimizing page migrations caused by the interference. This
also provides useful information for tackling the problem of VMA
size changes, which we discuss further in Section 3.4.

Another consideration for anchor point placement is physical
page alignment. In general, virtual page and physical frame align-
ment are chosen based on the needs of TLB implementations. Tra-
ditional TLBs assume that virtual pages and physical frames are
aligned based on page size. For example, TLBs that can cache 2MB
huge pages require that the virtual page and physical frame of the
huge page begin at 2MB address boundaries. For such cases, we
ensure that anchor points are aligned to the largest architectural
page size smaller than or equal to the region in question. For ex-
ample, a 6MB region will be 2MB-aligned so that it can be in-place
promoted to three 2MB large pages. On the other hand, newer
contiguity-aware TLBs like range TLBs lift this restriction and do
not require any form of alignment in the contiguous regions [23].

VMA1
[V0, V3]

V1 V2 V3V0

VMA1
[V0, V3]

V1 V2 V3V0

VMA2
[V12, V15]

V13 V14 V15V12

VMA2
[V12, V15]

V13 V14 V15V12

Physical Frames

…P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14…

(a) Avoiding interference

Physical Frames

VMA1
[V0, V3]

V1 V2 V3V0

VMA1
[V0, V3]

V1 V2 V3V0

VMA2
[V12, V15]

V13 V14 V15V12

VMA2
[V12, V15]

V13 V14 V15V12

…P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14…

(b) Interference during coalescing

Figure 7: Anchor points (shown with red arrows) must be
chosen carefully to prevent inter-VMA interference.

3.3 Intra-VMA Page Coalescing
After the anchor point of a VMA is selected based on the steps
described above, Translation Ranger coalesces pages within the
VMA to create contiguity. Figure 6 shows how coalescing proceeds
after an anchor point selection within each VMA.When performing
coalescing within a VMA, Translation Ranger has to handle
several practical issues:

In-Use Page Frames. Target physical frames may be in one of two
states: free or in-use. If a target page frame Pn is free, Translation
Ranger use Linux’s page migration mechanism to move the source
frame’s data to the target frame. If a target page frame Pn is in use,
we cannot simply clobber it. One solution would be to move the con-
tents of the in-use frame to an intermediate physical frame before
migrating the source frame to the target frame, but this suffers from
extra storage and copy time overhead. In addition, under memory
pressure, allocating a new intermediate physical frame can trigger
the page reclamation process, leading to significant performance
degradation.

Therefore, we directly exchange two pages by unmapping the
two pages at the same time, exchanging the content of the two pages,
and finally remapping these two pages [54]. Instead of copying data
into new pages, this patch transfers data between source and target
pages using CPU registers as the temporary storage for in-flight
iterative data exchange operations. This approach requires no extra
storage or page allocation and even supports the exchange of THPs.
It supports exchanging between two anonymous pages as well as
between one anonymous page and one file-backed page, but it does
not support exchange of two file-backed pages (due to complicated
file system locking and their rare occurrence).

Non-Movable Pages. Another issue that Translation Ranger
must handle is the presence of non-movable pages. Some exam-
ples of non-movable pages are those in use by the kernel (e.g., for

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee

VMA1
[V0, V6]

V1 V2 V3V0

VMA1
[V0, V6]

V1 V2 V3V0

VMA2
[V12, V15]

V13 V14 V15V12

VMA2
[V12, V15]

V13 V14 V15V12

Physical Frames

…P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14…

V4 V5 V6

(a) VMA1 grows its size at the end. Its new virtual pages V4, V5, and V6
overlap with VMA2 during memory coalescing.

VMA1
[V0, V1]

V1 V2 V3V0

VMA1
[V0, V1]

V1 V2 V3V0

VMA2
[V12, V15]

V13 V14 V15V12

VMA2
[V12, V15]

V13 V14 V15V12

Physical Frames

…P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14P3 P4 P5 P6P2 P8 P9P7 P10 P11 P12 P13 P14…

(b) VMA1 shrinks its size at the end. The freed virtual pages V2 and V3
leave a physical page gap and fragment memory.

Figure 8: VMA size changes: VMA growth and shrinkage.
They cause inter-VMA interference and memory fragmen-
tation, respectively

slab allocations, page tables, or other kernel data structures). Alter-
nately, a page may be marked as busy because it is involved in I/O
operations, migration, dirty page writeback, or DMA. We handle
each of these non-movable page types in different ways. Since ker-
nel pages usually have a long lifetime and limited OS support for
page migration, we simply skip them during the coalescing process.
However, busy pages are usually ephemeral; therefore, even if these
pages cannot be moved currently, Translation Ranger will try
to coalesce them again in the future using iterative coalescing. If
Translation Ranger must skip a non-movable frame, it will con-
tinue coalescing the remaining frames using the originally selected
anchor point. We investigated the value of creating new anchor
points following non-movable pages, but we found that doing so
yields little benefit. Generating additional anchor points needlessly
splits a large contiguous region into two smaller contiguous regions
should a busy page (the cause of a new anchor) become non-busy
in the future.

3.4 Iterative Page Frame Coalescing
Applications can grow and shrink their VMAs over time. This is
problematic if a VMA grows so that its physically contiguous region
overlaps and interferes with another VMA, or if a VMA shrinks
enough that the freed physical frames become a free memory frag-
ment.We show both cases in Figure 8. To avoid this problem, Trans-
lation Ranger tracks per-VMA size along with each VMA’s co-
alesced region size during each coalescing iteration. If, on future
iterations, Translation Ranger discovers a VMA that has now
grown and overlaps with another VMA (by examining coalesced
region information), Translation Ranger relocates the coalesced
region of one of the two VMAs by assigning a new anchor point.
To minimize page frame relocation overheads, the smaller of the

two is moved. On the other hand, if no overlapping occurs, the
new addition to the VMA will also be coalesced and the VMA’s
coalesced region size will be adjusted accordingly.

Translation Ranger is also designed to coalesce large impor-
tant VMAs and ignore smaller shorter-lived VMAs (< 2MB) such as
those used to map data structures like thread stacks. The rationale is
that these VMAs tend to be sufficiently small such that that coalesc-
ing their page frames them yields little additional contiguity relative
to the overhead of the necessary page migrations. We believe more
sophisticated strategies, e.g., consolidating multiple thread stacks,
or lazy VMA deallocation to lengthen VMA lifetimes, could further
decrease coalescing overhead and generate even larger contiguous
regions, but we leave these for future work.

3.5 Additional Implementation Challenges
Synonyms and Copy-on-Write. To handle synonyms, Trans-
lation Ranger coalesces a physical range based on the anchor
point from the first created VMA, and ignores the anchor points
of the synonym VMAs. This can be done efficiently in Linux by
checking anon_vma for anonymous VMAs and address_space for
file-backed VMAs. Care needs to be taken when generating contigu-
ity on pages created by copy-on-write (COW) to avoid unnecessary
coalescing work. Translation Ranger skips forked VMAs that
share the same physical pages, the same way it does for skipping
synonym VMAs. After COW, Translation Ranger creates a new
anchor point with the COW physical page for that VMA.

Reducing Runtime Overheads. Excessive page migration dur-
ing coalescing can incur high runtime overheads. To avoid this,
Translation Ranger selects anchor points to avoid inter-VMA
interference (see Figure 7). Furthermore, it focuses on large and
long-lived VMAs to avoid wasting coalescing effort (see Section
3.4). Moreover, we enable users or system administrators to con-
trol Translation Ranger’s runtime impact through a tunable
parameter. We envision that this tunable will be used the same way
as the vast majority of other existing operating system services
like khugepaged. That is, if there is hardware to take advantage of
contiguity (via TLB optimizations like range TLBs), we can expect
administrators to run Translation Ranger more frequently to
aggressively generate contiguity, though we will reflect on a sane
default in Section 5.3. Finally, we design Translation Ranger as
a background daemon that is not on the critical path of application
execution and can “steal” idle CPU cycles. This is similar in spirit
to the design of already-existing daemons like khugepaged.

4 EXPERIMENTAL METHODOLOGY
Translation Ranger is widely deployable on systems with and
without fragmentation and can leverage any previously-proposed
TLB hardware that supports translation contiguity [4, 18, 23, 37, 39].
Naturally, Translation Ranger’s performance benefits will vary
depending on the target system’s fragmentation levels and the
contiguity-aware TLBs that leverage it. To achieve good perfor-
mance, Translation Ranger must generate enough translation
contiguity for contiguity-aware TLBs to offset any runtime over-
heads from Translation Ranger’s page movement operations.

Translation Ranger: Operating System Support for Contiguity-Aware TLBs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Experimental Environment

Processors 2-socket Intel E5–2650v4 (Broadwell),
24 cores/socket, 2 threads/core, 2.2 GHz

L1 DTLB
4KB pages: 64-entry, 4-way set assoc.
2MB pages: 32-entry, 4-way set assoc.
1GB pages: 4-entry, 4-way set assoc.

L1 ITLB 4KB pages: 128-entry, 4-way set assoc.
2MB pages: 8-entry, fully assoc.

L2 TLB 4KB&2MB pages: 1536-entry, 6-way set assoc.
1GB pages: 16-entry, 4-way set assoc.

Memory 128GB DDR4 (per socket)

OS Debian Buster — Linux v4.16.0

Table 2: System configurations and per-core TLB hierarchy.

4.1 Evaluation Platform
We implement Translation Ranger in Linux kernel v4.16 and eval-
uate it on a two-socket Intel server (see Table 2). We run a variety of
benchmarks from SPECACCEL [22], the GAP benchmark suite2 [6],
graph500 [31], and GUPS [43] (see Table 3). Translation Ranger
running as a service daemon is collocated with applications in the
same memory node and tuned to periodically coalesce application
memory; to produce contiguity statistics, application memory is
scanned every 5 seconds to retrieve the virtual-to-physical map-
pings of each page belonging to the application. This statistics
collection is engineered to have negligible impact on runtime and
would not be present in production deployments.

A central insight from our work is that system load and frag-
mentation levels is critical to the question of how much contiguity
can be generated. The success of contiguity-aware TLBs rests on
the OSes ability to generate contiguity robustly across a wide va-
riety of scenarios. To stress-test whether Translation Ranger
indeed generates contiguity in heavily fragmented environments,
we go beyond prior work [4, 18, 38–40] to use a methodology that
preconditions memory before our evaluations.

We first use an existing methodology used by kernel developers
to artificially fragment the free memory lists as if our system was
long-running system with all its free lists randomized [52]. We then
further load the system by run a synthetic benchmark, memhog, an
application that allocates memory throughout the physical address
space, and has been used in prior studies to create fragmentation.
Together, these steps ensure that memory is in a fragmented state
similar to a realistic steady state shown in Figure 3, which prevents
applications obtaining unrealistic contiguity from sequential mem-
ory accesses. We also configure our benchmarks to use 95% of total
free memory similar to many datacenter and HPC environments.

4.2 Experimental Configurations
To understand Translation Ranger’s effectiveness on improv-
ing memory contiguity, we use Linux’s default buddy allocator
configuration (Linux Default) as our baseline. This baseline is
what has been used by prior contiguity-aware TLB designs that
2We scaled up two synthetic input graphs, Kron and Urand, and run three kernels,
Between Centrality (bc), Connected Components (cc), and PageRank (pr) with these
two input graphs.

Suite Description Benchmark Footprint

SPEC
ACCEL

Compute & memory
intensive
multi-threaded
workloads using
OpenMP

503.postencil 121GB
551.ppalm 121GB
553.pclvrleaf 121GB
555.pseismic 120GB
556.psp 113GB
559.pmniGhost 120GB
560.pilbdc 121GB
563.pswim 117GB
570.pbt 119GB

HPC

Generation and search
of graphs

Graph500 122GB

Random access
benchmark

GUPS 128GB

GAP
Bench-
marks

Common graph
processing kernels

bc-kron 121GB
bc-urand 122GB
cc-kron 116GB
cc-urand 116GB
pr-kron 116GB
pr-urand 116GB

Table 3: Benchmark descriptions and memory footprints.

rely on serendipitously generated contiguity [37–39]. We also com-
pare against an enhanced buddy allocator with its max order in-
creased to 20, permitting 2GB contiguous region allocations. This
Large Max Order is representative of approaches from prior work
like redundant memory mappings and devirtualizing memory be-
cause it relies on generating contiguity at allocation time and hence
serves as a valuable point of comparison to our approach [18, 23].
Furthermore, we compare Translation Ranger to Enhanced
khugepaged, which is another technique Linux uses to generate
contiguity by collapsing scattered 4KB pages into a new THP. To
conservatively assess Translation Ranger’s relative benefits, we
tune khugepaged to scan the entire application footprint every 5s
as opposed to its default of defragmenting only 16MB of memory
every 60s.

Finally, when profiling Translation Ranger, we quantify the
results when coalescing every 5 seconds, and every 50 seconds to
showcase the relationship between runtime overheads and Trans-
lation Ranger’s ability to generate contiguity. For all five config-
urations, THPs are enabled by default and the buddy allocator uses
Linux’s default max order 11 to allow a maximum 4MB contiguous
page allocation, except for Large Max Order.

4.3 Contiguity Metrics
We focus on two metrics to evaluate the effectiveness of Transla-
tion Ranger on real systems. First, we count the total number of
contiguous regions needed to cover the entire application memory
footprint (TotalNumContigRegions). Our goal is to reduce the total
number these regions such that their total amount is comparable to
the most aggressive eager paging and identity mapping techniques
from prior work (e.g., direct segments, range TLBs, devirtualizing
memory [4, 18, 23]).

We calculate the percentage of total application footprint cov-
ered by the largest 32 contiguous regions (MemCoverage32Regions)
and the percentage of total application footprint covered by the

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee

graph500-omp gups bc-kron bc-urand cc-kron cc-urand pr-kron pr-urand

503.postencil 551.ppalm 553.pclvrleaf 555.pseismic 556.psp 559.pmniGhost 560.pilbdc 563.pswim 570.pbt

0e+00

1e+05

2e+05

3e+05

0

20000

40000

60000

0

25000

50000

75000

0

20000

40000

0

25000

50000

75000

0

10000

20000

30000

40000

0

30000

60000

90000

0

20000

40000

60000

0

25000

50000

75000

0

20000

40000

60000

0

50000

100000

150000

0

10000

20000

30000

40000

0

50000

100000

150000

0

10000

20000

30000

40000

0

10000

20000

30000

40000

0

10000

20000

30000

0

20000

40000

N
u

m
 o

f
re

g
io

n
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

Linux Default Large Max Order Enhanced khugepaged
Translation Ranger
(every 5s)

Translation Ranger
(every 50s)

Figure 9: Total number of contiguous regions covering entire application memory (TotalNumContigRegions).

largest 128 contiguous regions (MemCoverage128Regions). Our goal
is to show that even small 32-128 entry contiguity-aware TLBs
can capture the majority of the application footprint. This metric
has been previously used by prior work [18, 23] to understand
contiguity improvements.

4.4 System Overheads
Translation Ranger can add overhead to systems because pages
undergoing migration are not accessible to applications and require
TLB invalidations and shootdowns. Naturally, these overheads will
be offset by improved TLB hit rates. Nevertheless, to mitigate even
the cost of page migration, we present all benchmark runtimes
for the five measured configurations in the conservative scenarios
where contiguity-aware TLBs are absent. We normalize these run-
times to our baseline, Linux Default. Our platform supports discrete
page sizes (4KB and 2MB) but does not take advantage of other
kinds of contiguity, so excess application runtime due to coalescing
can be viewed as the software tax of our system. Ultimately, we
will show that Translation Ranger generates contiguity compa-
rable to the most aggressive prior proposals, while simultaneously
incurring such low overheads that the benefits will come virtually
“for free” on most systems.

5 EXPERIMENTAL RESULTS
We begin by showing translation contiguity results for all bench-
marks, followed by highlighting two interesting cases to provide
more detail about how applications behave over time. Finally, we
show system runtime overheads and discuss Translation Ranger’s
applicability to other OSes.

5.1 Overall Translation Contiguity Results
To concisely show individual results, we show several metrics, in-
cluding TotalNumContigRegions, MemCoverage32Regions, and
MemCoverage128Regions in Figure 9 and Figure 10 using violin plots [51].
Violin plots aggregate all numbers over application runtime into a
distribution represented by a“violin plot” parallel to the y-axis. The

thickness of a violin plot indicates how often the values from y-axis
occur. The arithmetic mean of all values is shown as a diamond
symbol within each plot.

Figure 9 shows the TotalNumContigRegions distributions for all
benchmarks. We observe that most benchmarks show
TotalNumContigRegions aggregating in one primary area, which re-
flects their bulk memory allocation behavior; the number of regions
does not change much over time. On the other hand, 556.psp and
570.pbt, which allocate memory recurrently, have their
TotalNumContigRegions spread across a range of values along the y-
axis due to frequent small allocations.

Among the five configurations, Linux Default and Enhanced
khugepaged require many more contiguous regions (violin plots
are thick at the top of each plot) to cover each application’s memory
footprint. This is primarily because they are both limited by the
buddy allocator, which yields contiguity regions up to 4MB. The
Large Max Order configuration can generate much larger, and thus
fewer contiguous regions, since it modifies the buddy allocator to
provide up to 2GB contiguous regions. However, Translation
Ranger (at either frequency) is able to coalesce memory more
effectively and needs far fewer contiguous regions to cover each
application footprint; i.e., it is the most successful technique for
generating contiguity.

Figure 10 shows the coverage of each technique when using
the largest 32 or 128 contiguous regions. The plots tend to cluster
together. This is because TLB coverage is influenced by the size of
the largest contiguous regions present in the system and not just the
total number of regions. Among all five OS configurations, Linux
Default and Enhanced khugepaged can typically only cover < 1%
of each application footprint (with either 32 or 128 regions), since
they can achieve at most 4MB contiguous regions. The Large Max
Order configuration can typically cover up to 40% of the application
footprint, but is also limited by 2GB contiguous regions from its
buddy allocator modifications. Theoretically, the Large Max Order
configuration should be able to cover all application footprints with
128 contiguous regions, if each region is at least 1GB. However,

Translation Ranger: Operating System Support for Contiguity-Aware TLBs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

graph500-omp gups bc-kron bc-urand cc-kron cc-urand pr-kron pr-urand

503.postencil 551.ppalm 553.pclvrleaf 555.pseismic 556.psp 559.pmniGhost 560.pilbdc 563.pswim 570.pbt

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

L
a

rg
e

s
t
3

2
 r

e
g

io
n

s

graph500-omp gups bc-kron bc-urand cc-kron cc-urand pr-kron pr-urand

503.postencil 551.ppalm 553.pclvrleaf 555.pseismic 556.psp 559.pmniGhost 560.pilbdc 563.pswim 570.pbt

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

L
a

rg
e

s
t
1

2
8

 r
e

g
io

n
s

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l m
e

m
o

ry
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

Linux Default Large Max Order Enhanced khugepaged
Translation Ranger
(every 5s)

Translation Ranger
(every 50s)

Figure 10: The percentage of total application footprint covered by the largest 32 contiguous regions (MemCoverage32Regions)
is shown in the top and percentage of total application footprint covered by the largest 128 contiguous regions (
MemCoverage128Regions) is shown in the bottom.

due to memory fragmentation, not all contiguous regions obtained
from the buddy allocator are maximally-sized.

Translation Ranger (at all the frequencies we studied; we
show 5s and 50s frequencies in our graphs) consistently creates
much larger contiguous regions that can cover the majority of each
application’s footprint. Utilizing 128 contiguous regions, Trans-
lation Ranger can typically cover > 90% of a 120GB application
footprint. In comparison, the last level TLB of a CPU today typically
contains 1536 entries and hence even when they exclusively use
THPs (2MB) they can only cover 2GB of footprint. Thus Transla-
tion Ranger combined with existing coalescing TLB proposals can
typically improve TLB coverage by over 30× as shown in Table 4.
Meanwhile, TLB storage could be reduced by 85% from a 1536-entry
traditional TLB to a 128-entry range cache, where the former uses
about 13.5KB3 and the latter uses 2KB [48].

5.2 Notable Individual Benchmarks
In order to provide more insight into how Translation Ranger
achieves contiguity, we highlight two workloads: 503.postencil,

3We assume the TLB use 36bit (or 4.5B) tag for VPN and 36bit (or 4.5B) data for PFN
and permission bits, so 4.5B × 2 × 1536/1024 = 13.5KB.

which allocates memory in bulk and 556.psp, which allocates and
frees memory frequently.

503.postencil Figure 11a shows the contiguity results over the
runtime of 503.postencil, which first creates a huge address region,
fills it with physical frames, then processes all data in memory.
The left most plot in Figure 11a shows the TotalNumContigRegions
over application runtime for the 5 contiguity producing approaches.
This plot shows the same data as the left most plot of Figure 9, but
spreads time out over the x-axis, thereby showing how the contigu-
ity changes over time. To translate between them, first consider the
left most plot of Figure 11a. We can see TotalNumContigRegions for
Linux Default increases from 0 to about 32,000 during the first 40%
of application runtime and becomes stable for the remaining 60%
runtime. In the left most plot of Figure 9, the Linux Default violin
plot is thickest around the value of 32,000, then is fairly uniformly
distributed between 0 and 32,000.

From the leftmost plot in Figure 11a, we see several interesting
trends. For example, with Translation Ranger more frequent
invocation (every 5 seconds) is able to generate large contiguous
regions more quickly than the less frequent invocation (every 50
seconds). However, after application memory allocations become

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee

Benchmark

Cmax of
a 1536-
entry
TLB

Largest 32
regions

Largest 128
regions

Cavд
Cavд
boost Cavд

Cavд
boost

503.postencil 3GB 70GB 23× 86GB 29×
551.ppalm 3GB 87GB 29× 104GB 35×
553.pclvrleaf 3GB 94GB 31× 117GB 39×
555.pseismic 3GB 96GB 32× 114GB 38×
556.psp 3GB 55GB 18× 56GB 19×
559.pmniGhost 3GB 92GB 30× 117GB 39×
560.pilbdc 3GB 81GB 27× 102GB 34×
563.pswim 3GB 92GB 31× 111GB 37×
570.pbt 3GB 90GB 30× 114GB 38×
graph500-omp 3GB 83GB 28× 99GB 33×
gups 3GB 100GB 33× 121GB 40×
bc-kron 3GB 106GB 35× 118GB 39×
bc-urand 3GB 107GB 36× 118GB 39×
cc-kron 3GB 102GB 34× 111GB 37×
cc-urand 3GB 97GB 32× 111GB 37×
pr-kron 3GB 104GB 35× 113GB 38×
pr-urand 3GB 102GB 34× 112GB 37×
Average 3GB 92GB 31× 107GB 36×

Table 4: Translation coverage (C) comparison between a
1536-entry traditional TLB and a contiguity-aware TLB us-
ing Translation Ranger (every 50s) with largest 32 regions
and 128 regions.

stable (at approximately 40% of the application runtime), the less
frequent invocation eventually results in a similar number of con-
tiguous regions being produced for the remainder of the execution.

In the middle and right plots plots of Figure 11a we observe that
the Linux Default and Enhanced khugepaged configurations can
cover very little (< 1%) of the application footprint throughout the
application lifetime. The Large Max Order configuration is a sub-
stantial improvement with 12.5% of the application footprint being
covered with the largest 32 contiguous regions and 32.3% with the
largest 128 contiguous regions respectively. However Translation
Ranger can cover at least 80% of application footprint with just
32 contiguous regions, and over 95% of the 121GB footprint using
128 contiguous regions after just several iterations of coalescing.
To summarize, contiguity-aware TLB designs will attain about 3×
TLB coverage (or could reduce their hardware resources propor-
tionally), if they simply use Translation Ranger instead of their
own software enhancements.

556.psp Figure 11b shows the contiguity results for 556.psp,
which frequently allocates and deallocates memory. The left most
plot of Figure 11b shows high volatility across all configurations
for TotalNumContigRegions because frequent memory allocations add
many fragmented small pages and deallocations remove existing
contiguous regions. All five experimental configurations suffer from
this type of application memory allocation pattern.

Because Translation Ranger iteratively coalesces memory
to generate contiguous regions, it requires 40% fewer contiguous
regions to cover the entire application footprint than Linux Default,

Large Max Order, or Enhanced khugepaged. The middle and right
plots in Figure 11b show that using the largest 32 or 128 contiguous
regions, Linux Default and Enhanced khugepaged can cover < 1%
of the application footprint. Large Max Order does a little better,
covering about 8% initially, but decreases to < 2% because of the
frequent memory allocations and deallocations.

In contrast, Translation Ranger (with frequency set to every
50 seconds) can cover more than 64% of the application footprint
with the largest 32 contiguous regions and the coverage is over 72%
during the bulk of application runtime; increasing the number of
regions to 128 further improves the coverage of the application’s
footprint to 75%. Additional improvements can come from running
Translation Ranger more frequently but do not seem necessary
in most cases.

5.3 Translation Ranger Overheads
So far we have shown that Translation Ranger creates systemat-
ically larger and dramatically fewer contiguous regions compared
to other approaches, but we must also consider its "software tax".
Figure 12 shows the application execution time across all five con-
figurations normalized to our baseline, Linux Default, averaged
across 5 runs to account for variation. Large Max Order, which
on average adds 1.1% runtime overhead, incurs very minor slow-
downs due to zeroing every free large page at allocation time. The
overhead of Enhanced khugepaged is negligible; although it runs
very frequently (every 5 seconds), the majority of each workload’s
memory is already THPs, leaving few base pages for it to convert
to THPs. This also explains its small improvements in contiguity
for most workloads. Finally, we show that Translation Ranger
adds, on average, 1.7% overhead when run every 50 seconds.

bc-kron provides an interesting study, because it actually runs
faster than expected with Enhanced khugepaged and Translation
Ranger. bc-kron cannot allocate as many THPs as possible at page
allocation time, which causes Linux Default and Large Max Or-
der suffer, whereas both Enhanced khugepaged and Translation
Ranger are able to generate more THPs out of fragmented in-use
pages after page allocation time. This improves the application per-
formance by reducing TLB misses and page table walk overheads
thanks to TLB support for huge pages on our test system.

When Translation Ranger is tuned to run more aggressively,
every 5 seconds, it also produces more contiguity. We measure an
average runtime overhead of of 2.3%, which is 0.6% more than run-
ning Translation Ranger every 50 seconds. This small overhead
buys more pronounced contiguity with over 90% of application foot-
print consistently covered with just 32 contiguous chunks through
application runtime. We conclude that Translation Ranger has
minimally invasive software overheads comparable to prior solu-
tions that are so small that it will will be more than offset by the
performance improvements achieved via TLB efficiency, reported
at 20-30% in prior proposals [18, 23, 39]. Because Translation
Ranger generates substantially more contiguity than those studies,
we also expect to see more performance, but an exhaustive study
of numerous contiguity-aware TLB designs is beyond the scope
of this comprehensive OS implementation of software support for
contiguity aware TLBs.

Translation Ranger: Operating System Support for Contiguity-Aware TLBs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

0

10000

20000

30000

0 20 40 60 80 100
Runtime (percentage)

N
u

m
 o

f
re

g
io

n
s

(l
o

w
e

r
is

 b
e

tt
e

r)

Total num of regions

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
Runtime (percentage)

P
e

rc
e

n
ta

g
e

 o
f
to

ta
l m

e
m

(h
ig

h
e

r
is

 b
e

tt
e

r)

Largest 32 regions

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
Runtime (percentage)

P
e

rc
e

n
ta

g
e

 o
f
to

ta
l m

e
m

(h
ig

h
e

r
is

 b
e

tt
e

r)

Largest 128 regions

Linux Default Large Max Order Enhanced khugepaged
Translation Ranger
(every 5s)

Translation Ranger
(every 50s)

(a) Contiguity results over time for 503.postencil.

0

20000

40000

60000

0 20 40 60 80 100
Runtime (percentage)

N
u

m
 o

f
re

g
io

n
s

(l
o

w
e

r
is

 b
e

tt
e

r)

Total num of regions

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
Runtime (percentage)

P
e

rc
e

n
ta

g
e

 o
f
to

ta
l m

e
m

(h
ig

h
e

r
is

 b
e

tt
e

r)
Largest 32 regions

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
Runtime (percentage)

P
e

rc
e

n
ta

g
e

 o
f
to

ta
l m

e
m

(h
ig

h
e

r
is

 b
e

tt
e

r)

Largest 128 regions

Linux Default Large Max Order Enhanced khugepaged
Translation Ranger
(every 5s)

Translation Ranger
(every 50s)

(b) Contiguity results over time for 556.psp.

Figure 11: Total number of contiguous regions covering entire application memory (TotalNumContigRegions) is shown in the
left most plot; percentage of total application footprint covered by the largest 32 contiguous regions (MemCoverage32Regions)
is shown in the middle plot; percentage of total application footprint covered by the largest 128 contiguous regions (
MemCoverage128Regions) is shown in the right most plot.

5.4 Discussion
Applicability to other OSes. The Translation Ranger concept
is not Linux specific and is compatible with other OSes like Win-
dows and FreeBSD, which maintain VMA-like data structures per
process. For example, FreeBSD uses vm_map_entry to identify a
contiguous virtual address range instead of a VMA, vm_object
to represent a group of physical frames from one memory ob-
ject instead of anon_vma for an anonymous memory object and
address_mapping for a file in Linux. To port Translation Ranger
to FreeBSD, we can generate contiguity on each vm_map_entry and
assign one anchor point to it instead of each VMA.

Permission Checks. All recent work on contiguous regions, in-
cluding ours, assumes that contiguous regions belong to single
VMAs with uniform permissions for all their virtual pages. If the
permission of a virtual address range in this VMA is changed, the
VMA will be broken into two or more new VMAs with correspond-
ing updated permissions and the page table entries will be updated
respectively. This also breaks one contiguous region into multiple
regions, and contiguity-aware TLBs will need additional entries
to address the original memory address range. To mitigate this
problem, new address translation designs [1, 4] that can decou-
ple permission checks from virtual-to-physical address translation,
could be helpful, as they allow the TLB to maintain the original
contiguous region entry but with additional permission subsections.

NUMA Effects. This initial study focuses on only one memory
node in our system as a tractable configuration to thoroughly un-
derstand Translation Ranger. Translation Ranger can easily
be extended to multi-node NUMA systems, though Translation
Ranger’s cross-socket traffic overheads will have to be integrated
with previously-proposed NUMA paging policies, like autoNUMA,
Carrefour-LP, and Ingens [10, 15, 26] to minimize overheads.

6 RELATEDWORK
Prior work on memory allocation has studied ways to increase
contiguity and reduce memory fragmentation [8, 21, 33] and is
discussed in Table 1.

Memory Allocation. Internal and external memory fragmenta-
tions are two major problems for memory allocations. To mitigate
internal memory fragmentation, the SLAB allocator and others (e.g.,
jemalloc and tcmalloc) pack small memory objects with the same
size together in one or more pages to avoid wasting space [8, 14, 16].
For external memory fragmentation, OSes use buddy allocators
to achieve fast memory allocation and restrict external fragmen-
tation [25]. Linux developers separate kernel and user memory
allocations to further reduce external fragmentation [17]. Addi-
tionally, peripheral devices often require access to physically con-
tiguous memory. Linux accommodates these devices with drivers
that use boot-time allocation and reserve contiguous memory be-
fore others can request memory via Contiguous Memory Allocators
(CMAs) [11]. CMAs use memory compaction to migrate fragmented

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

5
0

3
.p

o
s
te

n
c
il

5
5

1
.p

p
a

lm

5
5

3
.p

c
lv

rl
e

a
f

5
5

5
.p

s
e

is
m

ic

5
5

6
.p

s
p

5
5

9
.p

m
n

iG
h

o
s
t

5
6

0
.p

ilb
d

c

5
6

3
.p

s
w

im

5
7

0
.p

b
t

g
ra

p
h

5
0

0
-o

m
p

g
u

p
s

b
c
-k

ro
n

b
c
-u

ra
n

d

c
c
-k

ro
n

c
c
-u

ra
n

d

p
r-

k
ro

n

p
r-

u
ra

n
d

g
e

o
m

e
a

n

Benchmarks

N
o

rm
a

liz
e

d
 r

u
n

tim
e

Linux Default Large Max Order Enhanced khugepaged
Translation Ranger
(every 5s)

Translation Ranger
(every 50s)

Figure 12: Benchmark runtime for all five configurations:
LinuxDefault, LargeMaxOrder, Enhanced khugepaged, and
Translation Ranger with two running frequency. All run-
time is normalized to Linux Default.

pages and offer large contiguous physical memory for devices use,
especially for DMA data transfer [33]. These approaches try to
preserve contiguity for future use, but cannot prevent large free
memory blocks from being broken into small ones when memory
requests are small in sizes.

Huge pages. Significant prior work has gone into improving huge
pages. For example, a huge pages have one access bit, causing mem-
ory access imbalance problems in NUMA systems [15]. Several
proposals try to manage huge page wisely by restricting huge page
creation and splitting huge pages when they cause utilization im-
balance issues [15, 26]. These utilization issues could also happen
on contiguous regions created by Translation Ranger, thus in-
tegrating these policies with Translation Ranger could further
improve application performance in NUMA systems.

In heterogeneous memory systems, classifying hot and cold
pages to determine how to move them between fast/slow memories
is important. Previous work by Thermostat analyzes huge page
utilization by sampling sub-pages in each huge page and migrates
these cold sub-pages to slow memory to make efficient use of fast
memory [2]. Thermostat could provide useful utilization informa-
tion to Translation Ranger to assess page hotness in identifying
which VMAs are particularly worth coalescing.

The high cost of huge page allocation has been a problem for
Linux and can lead to application performance degradation [13,
29]. Recent work on Linux prevents free page fragmentation and
eliminates most huge page allocation costs by aggregating kernel
page allocations [34]. With the help of this work, Translation
Ranger could also improve in-use page fragmentation and free
page fragmentation, generating even larger contiguous regions.

7 CONCLUSIONS
Translation Ranger is an effective low-overhead technique for
coalescing scattered physical frames and generating translation
contiguity. The enormous contiguous regions created by Transla-
tion Ranger can be used by emerging contiguity-aware TLBs to

minimize address translation overhead for all computation units in
heterogeneous systems. Accelerators in particular will benefit, as
they often have limited hardware resources for address translation.
Translation Ranger can scale easily with increasing memory
sizes regardless of the limitations imposed by modern memory allo-
cators. With less than 2% runtime overhead, Translation Ranger
generates contiguous regions covering more than 90% of 120GB
application footprints with at most 128 regions, which can be fully
cached by contiguity-aware TLBs to minimize address translation
overhead. To address ever-increasing memory sizes, contiguity-
aware TLBs provide promising hardware support and Transla-
tion Ranger is the software cornerstone needed to enable these
designs.

ACKNOWLEDGMENTS
The authors thank Ján Veselý and Guilherme Cox for their input
on aspects of this work. This work was partially funded by NSF
awards 1319755 and 1916817.

REFERENCES
[1] Reto Achermann, Chris Dalton, Paolo Faraboschi, Moritz Hoffmann, Dejan Milo-

jicic, Geoffrey Ndu, Alexander Richardson, Timothy Roscoe, Adrian L. Shaw, and
Robert N. M. Watson. 2017. Separating Translation from Protection in Address
Spaces with Dynamic Remapping. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems (HotOS ’17). ACM, New York, NY, USA, 118–124.
https://doi.org/10.1145/3102980.3103000

[2] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
transparent Page Management for Two-tiered Main Memory. In Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’17). ACM, New York, NY,
USA, 631–644. https://doi.org/10.1145/3037697.3037706

[3] AMD Corporation. 2014. Compute Cores. https://www.amd.com/Documents/
Compute_Cores_Whitepaper.pdf. [Online; accessed 04-Aug-2018].

[4] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proceedings of
the 40th Annual International Symposium on Computer Architecture (ISCA ’13).
ACM, New York, NY, USA, 237–248. https://doi.org/10.1145/2485922.2485943

[5] Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2012. Reducing Memory
Reference Energy with Opportunistic Virtual Caching. In Proceedings of the
39th Annual International Symposium on Computer Architecture (ISCA ’12). IEEE
Computer Society, Washington, DC, USA, 297–308. http://dl.acm.org/citation.
cfm?id=2337159.2337194

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.
03619

[7] Abhishek Bhattacharjee. 2017. Preserving Virtual Memory by Mitigating the
Address Translation Wall. IEEE Micro 37, 5 (September 2017), 6–10. https:
//doi.org/10.1109/MM.2017.3711640

[8] Jeff Bonwick. 1994. The Slab Allocator: An Object-caching Kernel Memory Allo-
cator. In Proceedings of the USENIX Summer 1994 Technical Conference on USENIX
Summer 1994 Technical Conference - Volume 1 (USTC’94). USENIX Association,
Berkeley, CA, USA, 6–6. http://dl.acm.org/citation.cfm?id=1267257.1267263

[9] Mike Clark. 2016. A new x86 core architecture for the next generation of com-
puting. In 2016 IEEE Hot Chips 28 Symposium (HCS). 1–19. https://doi.org/10.
1109/HOTCHIPS.2016.7936224

[10] Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA scheduling.
http://lwn.net/Articles/488709/. [Online; accessed 04-Aug-2018].

[11] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005. Linux
Device Drivers, 3rd Edition. O’Reilly Media, Inc.

[12] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address Translation
for Architectures with Multiple Page Sizes. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).

[13] Nelson Elhage. [n.d.]. Disable Transparent Hugepages. https://blog.nelhage.com/
post/transparent-hugepages/. [Online; accessed 04-Aug-2018].

[14] Jason Evans. 2011. Scalable memory allocation using jemal-
loc. https://www.facebook.com/notes/facebook-engineering/
scalable-memory-allocation-using-jemalloc/480222803919. [Online; ac-
cessed 04-Aug-2018].

https://doi.org/10.1145/3102980.3103000
https://doi.org/10.1145/3037697.3037706
https://www.amd.com/Documents/Compute_Cores_Whitepaper.pdf
https://www.amd.com/Documents/Compute_Cores_Whitepaper.pdf
https://doi.org/10.1145/2485922.2485943
http://dl.acm.org/citation.cfm?id=2337159.2337194
http://dl.acm.org/citation.cfm?id=2337159.2337194
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/MM.2017.3711640
https://doi.org/10.1109/MM.2017.3711640
http://dl.acm.org/citation.cfm?id=1267257.1267263
https://doi.org/10.1109/HOTCHIPS.2016.7936224
https://doi.org/10.1109/HOTCHIPS.2016.7936224
http://lwn.net/Articles/488709/
https://blog.nelhage.com/post/transparent-hugepages/
https://blog.nelhage.com/post/transparent-hugepages/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919

Translation Ranger: Operating System Support for Contiguity-Aware TLBs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

[15] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra
Fedorova, and Vivien Quéma. 2014. Large Pages May Be Harmful on NUMA Sys-
tems. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 231–242.
http://dl.acm.org/citation.cfm?id=2643634.2643659

[16] Sanjay Ghemawat and Paul Menage. 2009. Tcmalloc: Thread-caching malloc.
http://goog-perftools.sourceforge.net/doc/tcmalloc.html. [Online; accessed 04-
Aug-2018].

[17] Mel Gorman and Andy Whitcroft. 2006. The what, the why and the where to of
anti-fragmentation. In Linux Symposium. 369–384.

[18] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2018. Devirtualizing
Memory in Heterogeneous Systems. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 637–650. https:
//doi.org/10.1145/3173162.3173194

[19] HSA Foundation. 2014. HSA Platform System Architecture Speci-
fication - Provisional 1.0. http://www.slideshare.net/hsafoundation/
hsa-platform-system-architecture-specification-provisional-verl-10-ratifed.
[Online; accessed 04-Aug-2018].

[20] Intel. 2018. Intel 64 and IA-32 Architectures Optimization Reference Manual.
[21] Mark S. Johnstone and Paul R.Wilson. 1998. TheMemory Fragmentation Problem:

Solved?. In Proceedings of the 1st International Symposium onMemoryManagement
(ISMM ’98). ACM, New York, NY, USA, 26–36. https://doi.org/10.1145/286860.
286864

[22] Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara Chapman,
Shuai Che, Mathew Colgrove, Huiyu Feng, Alexander Grund, Robert Henschel,
Wen-Mei W. Hwu, Huian Li, Matthias S. Müller, Wolfgang E. Nagel, Maxim
Perminov, Pavel Shelepugin, Kevin Skadron, John Stratton, Alexey Titov, Ke
Wang, Matthijs van Waveren, Brian Whitney, Sandra Wienke, Rengan Xu, and
Kalyan Kumaran. 2015. SPECACCEL: A StandardApplication Suite forMeasuring
Hardware Accelerator Performance. In High Performance Computing Systems.
Performance Modeling, Benchmarking, and Simulation, Stephen A. Jarvis, Steven A.
Wright, and Simon D. Hammond (Eds.). Springer International Publishing, Cham,
46–67.

[23] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 66–78. https://doi.org/10.1145/2749469.
2749471

[24] Vasileios Karakostas, Jayneel Gandhi, Adrian Cristal, Mark Hill, Kathryn McKin-
ley, Mario Nemirovsky, Michael Swift, and Osman Unsal. 2016. Energy-efficient
address translation. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 631–643. https://doi.org/10.1109/HPCA.2016.
7446100

[25] Kenneth C. Knowlton. 1965. A Fast Storage Allocator. Commun. ACM 8, 10 (Oct.
1965), 623–624. https://doi.org/10.1145/365628.365655

[26] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 705–721. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/kwon

[27] Adam Litke. [n.d.]. libhugetlbfs. https://lwn.net/Articles/171451/. [Online;
accessed 04-Aug-2018].

[28] Jason Lowe-Power. [n.d.]. Inferring Kaveri’s Shared Virtual
Memory Implementation. http://www.lowepower.com/jason/
inferring-kaveris-shared-virtual-memory-implementation.html. [Online;
accessed 04-Aug-2018].

[29] MongoDB Manual. [n.d.]. Disable Transparent Hugepages (THP). https://docs.
mongodb.com/manual/tutorial/transparent-huge-pages/. [Online; accessed 04-
Aug-2018].

[30] Marshall Kirk McKusick and George V. Neville-Neil. 2004. The Design and
Implementation of the FreeBSD Operating System. Pearson Education.

[31] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. 2010.
Introducing the Graph 500. In Cray User’s Group.

[32] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Practical,
Transparent Operating System Support for Superpages. SIGOPS Oper. Syst. Rev.
36, SI (Dec. 2002), 89–104. https://doi.org/10.1145/844128.844138

[33] Michal Nazarewicz. [n.d.]. A deep dive into CMA. https://lwn.net/Articles/
486301/. [Online; accessed 08-Jul-2018].

[34] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge Pages
Actually Useful. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS

’18). ACM, New York, NY, USA, 679–692. https://doi.org/10.1145/3173162.3173203
[35] Myrto Papadopoulou, Xin Tong, Andre Seznec, and Andreas Moshovos. 2015.

Prediction-based superpage-friendly TLB designs. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). 210–222. https:
//doi.org/10.1109/HPCA.2015.7056034

[36] Mayank Parasar, Abhishek Bhattacharjee, and Tushar Krishna. 2018. SEESAW:
Using Superpages to Improve VIPT Caches. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 193–206. https://doi.
org/10.1109/ISCA.2018.00026

[37] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. 2017. Hybrid
TLB Coalescing: Improving TLB Translation Coverage Under Diverse Fragmented
Memory Allocations. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 444–456. https:
//doi.org/10.1145/3079856.3080217

[38] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In 2014 IEEE
20th International Symposium on High Performance Computer Architecture (HPCA).
558–567. https://doi.org/10.1109/HPCA.2014.6835964

[39] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45).
IEEE Computer Society, Washington, DC, USA, 258–269. https://doi.org/10.
1109/MICRO.2012.32

[40] Binh Pham, Jan Vesely, Gabriel Loh, and Abhishek Bhattacharjee. 2015. Large
Pages and Lightweight Memory Management in Virtualized Environments: Can
YouHave it BothWays. In International Symposium onMicroarchitecture (MICRO).

[41] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architectural
Support for Address Translation on GPUs: Designing Memory Management
Units for CPU/GPUs with Unified Address Spaces. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 743–758.

[42] Mark E. Russinovich, David A. Solomon, and Alex Ionescu. 2012. Windows
Internals, Part 2: Covering Windows Server 2008 R2 and Windows 7 (Windows
Internals). Microsoft Press, Redmond, WA, USA.

[43] V. Saxena, Y. Sabharwal, and P. Bhatotia. 2010. Performance evaluation and
optimization of random memory access on multicores with high productivity.
In 2010 International Conference on High Performance Computing. 1–10. https:
//doi.org/10.1109/HIPC.2010.5713168

[44] Andre Seznec. 2004. Concurrent support of multiple page sizes on a skewed
associative TLB. IEEE Trans. Comput. 53, 7, 924–927. https://doi.org/10.1109/TC.
2004.21

[45] Yakun Sophia Shao, Sam Xi, Viji Srinivasan, Gu-Yeon Wei, and David Brooks.
2015. Toward Cache-Friendly Hardware Accelerators. In HPCA Sensors and Cloud
Architectures Workshop (SCAW) (2015-02-07). http://www.eecs.harvard.edu/
~shao/papers/shao2015-scaw.pdf

[46] M. Talluri and M. D. Hill. 1994. Surpassing the TLB Performance of Superpages
with Less Operating System Support. In Proceedings of ASPLOS.

[47] Vijay Tatkar. [n.d.]. What Is the SPARC M7 Data Analytics Accelerator? https:
//community.oracle.com/docs/DOC-994842. [Online; accessed 04-Aug-2018].

[48] Mohit Tiwari, Banit Agrawal, Shashidhar Mysore, Jonathan Valamehr, and Tim-
othy Sherwood. 2008. A Small Cache of Large Ranges: Hardware Methods
for Efficiently Searching, Storing, and Updating Big Dataflow Tags. In Pro-
ceedings of the 41st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 41). IEEE Computer Society, Washington, DC, USA, 94–105.
https://doi.org/10.1109/MICRO.2008.4771782

[49] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Abhishek Bhat-
tacharjee. 2016. Observations and opportunities in architecting shared vir-
tual memory for heterogeneous systems. In 2016 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 161–171. https:
//doi.org/10.1109/ISPASS.2016.7482091

[50] Andy Whitcroft. [n.d.]. sparsemem memory model. https://lwn.net/Articles/
134804/. [Online; accessed 04-Aug-2018].

[51] Wikipedia. [n.d.]. Violin plot. https://en.wikipedia.org/wiki/Violin_plot. [Online;
accessed 04-Aug-2018].

[52] Dan Williams. 2018. Randomize free memory. https://lwn.net/Articles/767614/.
[Online; accessed 07-Dec-2018].

[53] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. 1995. Dy-
namic storage allocation: A survey and critical review. In Memory Management,
Henry G. Baler (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–116.

[54] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
Page Management for Tiered Memory Systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’19). ACM, New York, NY, USA. https:
//doi.org/10.1145/3297858.3304024

http://dl.acm.org/citation.cfm?id=2643634.2643659
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3173162.3173194
http://www.slideshare.net/hsafoundation/hsa-platform-system-architecture-specification-provisional-verl-10-ratifed
http://www.slideshare.net/hsafoundation/hsa-platform-system-architecture-specification-provisional-verl-10-ratifed
https://doi.org/10.1145/286860.286864
https://doi.org/10.1145/286860.286864
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1109/HPCA.2016.7446100
https://doi.org/10.1109/HPCA.2016.7446100
https://doi.org/10.1145/365628.365655
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://lwn.net/Articles/171451/
http://www.lowepower.com/jason/inferring-kaveris-shared-virtual-memory-implementation.html
http://www.lowepower.com/jason/inferring-kaveris-shared-virtual-memory-implementation.html
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://doi.org/10.1145/844128.844138
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1109/HPCA.2015.7056034
https://doi.org/10.1109/HPCA.2015.7056034
https://doi.org/10.1109/ISCA.2018.00026
https://doi.org/10.1109/ISCA.2018.00026
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1109/HIPC.2010.5713168
https://doi.org/10.1109/HIPC.2010.5713168
https://doi.org/10.1109/TC.2004.21
https://doi.org/10.1109/TC.2004.21
http://www.eecs.harvard.edu/~shao/papers/shao2015-scaw.pdf
http://www.eecs.harvard.edu/~shao/papers/shao2015-scaw.pdf
https://community.oracle.com/docs/DOC-994842
https://community.oracle.com/docs/DOC-994842
https://doi.org/10.1109/MICRO.2008.4771782
https://doi.org/10.1109/ISPASS.2016.7482091
https://doi.org/10.1109/ISPASS.2016.7482091
https://lwn.net/Articles/134804/
https://lwn.net/Articles/134804/
https://en.wikipedia.org/wiki/Violin_plot
https://lwn.net/Articles/767614/
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024

	Abstract
	1 Introduction
	2 Background
	2.1 Using Translation Contiguity
	2.2 Allocation-Time Contiguity
	2.3 Memory Fragmentation

	3 Translation Ranger
	3.1 Design Overview
	3.2 Per-VMA Anchor Point Assignment
	3.3 Intra-VMA Page Coalescing
	3.4 Iterative Page Frame Coalescing
	3.5 Additional Implementation Challenges

	4 Experimental Methodology
	4.1 Evaluation Platform
	4.2 Experimental Configurations
	4.3 Contiguity Metrics
	4.4 System Overheads

	5 Experimental Results
	5.1 Overall Translation Contiguity Results
	5.2 Notable Individual Benchmarks
	5.3 Translation Ranger Overheads
	5.4 Discussion

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

